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ON AN OPTIMAL SHAPE PROBLEM FOR THE EIGENFREQUENCY OF
THE CLAMPED PLATE
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Abstract. Minimization problem with respect to domain is considered for the eigenvalues

of the biharmonic operator describing the tranverse vibrations of the clamped plate. Using

the variation formula a necessary optimality condition is derived for the considered domain

functional.
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1. Introduction

In continuum mechanics, plate theories are mathematical descriptions of the mechanics of flat
plates that draws on the theory of beams. Plates are defined as plane structural elements with
a small thickness compared to the planar dimensions. The typical thickness to width ratio of a
plate structure is less than 0.1. A plate theory takes advantage of this disparity in length scale
to reduce the full three-dimensional solid mechanics problem to a two-dimensional problem.

Of the numerous plate theories that have been developed since the late 19th century, two
are widely accepted and used in engineering. These are the Kirchhoff–Love theory of plates
(classical plate theory) and the Mindlin-Reissner theory of plates (first-order shear plate the-
ory). In both these theories the area (domain) of the plate is fixed and the aim is to calculate
the deformation and stresses in a plate subjected to loads [11].

But some practical situations put a problem to find and then optimize (minimize or maxi-
mize) the eigenfrequency of the plate under across vibrations. The optimization may be done
by choosing the physical characteristics of the plate. Some engineering solutions require the
optimization of the eigenfrequency by varying the form (area, domain) of the plate. For these
problems it is expedient to consider a plate with non-fixed, variable area. Then the eigenfre-
quency of such plate may be considered as functional depending on the plate area (domain). By
this way we arrive to the shape optimization problems. Note that the existence in such prob-
lems is investigated by various authors [3-5, 13,15]. As is shown these problem are well-posed if
the set of admissible domains satisfy some geometrical restrictions, for example, are open sets,
or the functional under minimization depends on lower number of eigenvalues (in the case of
plates-eigenfrequences).

Here we consider the eigenfrequency of the clamped plate under transverse vibrations as a
functional of the plate domain, calculate its first domain variation, proof an explicit formula for

1Institute of Applied Mathematics Baku State University, Baku, Azerbaijan
2Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
3Sumgait State University, Sumgait, Azerbaijan

e-mail: gasimov.yusif@gmail.com

Manuscript received November 2015.

28



Y.S. GASIMOV et al: ON AN OPTIMAL SHAPE PROBLEM FOR ... 29

the eigenfrequency. Note that the obtained formula shows that boundary values of the function
uj(x) uniquely define the eigenfrequency and may have an important value in many applications.
At the end we consider one particular case and find an optimal domain.

2. Statement of the problem

It is known that the function ω(x1, x2, t) describing the transverse vibrations of the plate with
area D satisfies to the following partial differential equation of the fourth order

ωx1x1x1x1 + 2ωx1x1x2x2 + ωx2x2x2x2 + ωtt = 0, x ∈ D, (1)

where D is a convex bounded domain from Euclidian space En [10]. Assuming the process stable
the solution (eigenvibration) of this equation may be sought in the form

ω (x1, x2, t) = u (x1, x2) cosµt,

where λ stands for the eigenfrequency.
Substitution this into the equation (1) gives

∆2u = λu, (2)

where ∆2 = ∆∆, ∆ is the Laplace operator, λ = µ2 .
This equation may be equipped by different boundary conditions for different plates. In the

case of clamped plate those conditions indeed are

u = 0,
∂u

∂n
= 0 , x ∈ SD, (3)

where SD is a boundary of the domain D.
Let

K =
{
D ∈ En : D ∈ K0, SD ∈ C2

}
,

where D is a closure of D, K0 is some subset of convex bounded domains from En. Note that
K0 may be defined by various ways, as well as, by fixing the area, the length of boundary or by
the condition type of K1 ⊂ K0 ⊂ K2, where K1 ,K2 are given domains.

The problem is: to find a domain D ∈ K that is a solution of the problem

λ1 (D) → min, (4)

under the restriction
|SD| = 2π, (5)

where λ1 (D) is the first eigenvalue of the problem (2)-(3) in the domain D (indeed the first
eigenfrequency of the clamped plate with domain D), |SD| is a length of SD.

3. Main results

Thus we arrive to the shape optimization problem (2)-(5). As one can see the argument of the
functional under minimization (4) is a domain. This is the principle difference of the shape op-
timization problems from the traditional ones. This fact generates serious difficulties in solution
of such problems. The first one is the lack of existence of the optimal solutions (optimal shapes).
But as above noted in some cases the solution exists due some geometrical restrictions on the
domains, or the minimizing functional. In the case of shape optimization for the eigenvalues
of some operators (in our case for the operator ∆2 = ∆∆) the cost functional must depend on
lower number of the eigenvalues. Another difficulty is related to the mathematically constructive
description of the domain variation. Introduced by Cea J. and developed by Sokoowski J. and
Zolesio J.-P. vector filed method allowed one to solve a wide class of functions.
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This technique is based mainly on the calculation of the gradient or variations of the considered
functionals with respect to domain. But to do this first the mathematical definition of the
domain variation must be introduced. The idea of the vector field method is that the domain
is varied in a preselected direction. In this point this method has certain disadvantages [3].
For example, it is problematic to establish a connection between the vector field and the set
of admissible domains; to check: does satisfy the obtained after each iteration domain to the
imposed conditions during the numerical solution of the problem; sometimes the obtained set
of the “boundary” points does not form a boundary of any domain in general.

To overcome these and other difficulties in [14] a new definition of the domain variation
is introduced using one-to-one mapping between bounded convex sets and continuous positive
homogeneous convex functions. Thus the following statements are true. For any convex-bounded
domain its support function is continuous convex and positive homogeneous. Also it is known
that for each continuous convex positive homogeneous function there exists a convex bounded
set, such that this function is a support function for this set. The set coincides with the sub-
differential of this function at the origin [6]. This single-valued correspondence between domains
and convex and positive homogeneous functions allows us to express the variation of the domain
by the variation of the corresponding support function.

To do this it is shown that the set of such domains with boundaries from C2 (we denote this
set by M) forms a structure of linear space and one can even define a scalar product and norm
in it. The obtained space we denote by ML2. The variation of the domain then may be defined
in this space and as is shown naturally replaced by the variation of the corresponding support
function. Finally a shape derivative formula is derived for the integral cost functional in the
class of bounded convex domains.

This approach allows one to avoid some of above noted disadvantages of the existing methods.
For instance applying this method in the process of numerical simulation after each iteration we
get not only a set of boundary points, but also the values of the support function. The domain
then is reconstructed as a sub-differential of its support function in the point 0.

Note that this approach has been extended for more large classes of metrics and functions by
other authors. For instance in [1] the shape derivative formula for the integral cost functional
with respect to a class of admissible convex domains given in [12] is extended to the case of W 1,1

loc

functions. In [2] the obtained results are implemented in Brunn-Minkowski theory.
Let us give the definition of the variation of the functional in the space ML2 referring to [14].

As is denoted M =
{
D ∈ Rn : SD ∈ C2

}
.

The functional λ(D) is called differentiable in the Gateaux sense on M in the direction K0 if
for any D ∈ M there exists the limit

δλ (D0, D) = lim
ε→+0

λ ((1− ε) D0 + εD)− λ (D0)
ε

. (6)

Here we give the theorems which will be used in further considerations.
In [13] the following theorem is proved for the first variation of the functional λj (D)

Theorem 3.1. Eigenfrequency λj (D) of the clamped plate under transverse vibrations is dif-
ferentiable with respect to D in the Gateaux sense on M and the following formula is valid for
the its first variation

δλj(D) = −max
uj

∫

SD

(∆uj)2 [PD(n(x))− PD0(n(x))] ds
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where uj (x) is an eigenfunction (indeed an eigenvibration of the clamped plate) correspond-
ing to the eigenvalue (eigenfrequency) λj of the problem (2)-(3) in the domain D, PD (x) =
max
l∈D

(x, l) , x ∈ Rnis a support function of the domain D, max is taken over all eigenfunctions

uj in the case of multiplicity of λj.

Using this theorem the following important result is obtained in [9] for the eigenfrequency of
the clamped plate.

Theorem 3.2. For the eigenfrequency of the clamped plate in the domain D the formula

λj =
1
4

max
uj

∫

SD

(uj(x))2PD(n(x))ds. (7)

is valid.

Now we prove the following

Theorem 3.3. Let D∗ ∈ K gives minimum to the functional λj (D). Then for any D ∈ K is
valid the inequality ∫

SD

(∆uj(x))2 [PD(n(x))− PD∗(n(x))] ds ≤ 0, (8)

where u∗j (x)is an eigenfunction corresponding to the eigenvalue λ∗j of the problem (1)-(2) in the
domain D∗, PD (x) = max(x, l)

l∈D

, x ∈ Rn is a support function of the domain D, max is taken

over all eigenfunctions u∗j in the case of multiplicity of λj.

Proof. Let us take arbitrary D ∈ K, ε ∈ (0, 1) and denote Dε = (1 − ε)D∗ + εD. Since K is
convex we can write Dε ∈ K. Then according to the formula (8) for the eigenfrequency λj(D)
one can have

λj(Dε)− λj(D∗) = −max
uj

∫
SDε

∣∣∣∆u∗j (x)
∣∣∣
2
×

× [PDε(n(x))− PD∗(n(x))] ds + o(ε).

Considering
PDε − PD∗ = (1− ε)PD∗ + εPD − PD∗ = ε(PD − PD∗),

from the last we obtain

λj (Dε)− λj (D∗) = −εmax
uj

∫
SDε

∣∣∣∆u∗j (x)
∣∣∣
2
×

× [PD (n (x))− PD∗ (n (x))] ds + o (ε) .

Since according to the statement of the theorem D∗ gives minimum to the functional λj(D)
the following inequality is true

max
uj

∫

SDε

∣∣∆u∗j (x)
∣∣2 [PD (n (x))− PD∗ (n (x))] ds +

o (ε)
ε

≤ 0. (9)

From this by ε → +0 we come to the statement of the theorem. ¤

For our case the condition (8) takes the form
∫

SD∗
|∆u∗1 (x)|2 PD (n (x)) ds ≤

∫

SD∗
|∆u∗1 (x)|2 PD∗ (n (x)) ds, (10)
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Let us show that unit ball B satisfies this condition. It is known that on the surface SB of B

is true
|∆u∗1 (x)| = const, x ∈ SB.

Considering this in (5) we get
∫

SB

PD (n (x)) ds ≤
∫

SB

PB (n (x)) ds.

In [6] is proved that ∫

SB

PD (n (x)) ds =
∫

SD

dx = |SD| . (11)

From the other hand [6] ∫

SB

PB (n (x)) ds = 2π. (12)

Since |SD| = 2π in the considered problem, from (11) and (12) we obtain that unit ball
satisfies to the condition (10).
Note. As is shown in [7] in some cases λj (D) is a quasi-convex functional with respect to D.
In such cases (8) is also a sufficient condition.

4. Conclusion

In the paper a shape optimization problem is considered for the eigenfrequency of the clamped
plate under across vibrations. The first eigenfrequency is considered as a domain functional. A
necessary condition for the optimal domain is derived. A particular case is analyzed and optimal
shape is found.
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